Appendix I: Storage Facility Costs & Curves

National ENR CCI (Aug-05) =	7518
Seattle ENR CCI (Aug-05) =	8390
Average Michigan Location Factor =	96
San Francisco California Location Factor =	122
Seattle, Wa Location Factor =	105

				Average Location				Adjusted (to Seattle using RS	
Location	Project Name	Volume (Mgal)	Year	Factor (RS Means)	National ENR CCI	Original	Adjusted (2005)	Means City Cost Index)	Unit Cost (\$/gal)
Location	r roject ivallie	(Mgai)	Tour	incurrey	Little Go.	Original	7.10,00.00 (2000)		(4.3)
Michigan	Redford Township Retention Basin	1.9	1997	96	5860	\$15,700,000	\$20,142,082	\$22,030,402	\$11.59
Michigan	Seven Mile Retention Basin	2.2	1998	96	5880	\$14,500,000	\$18,539,286	\$20,277,344	\$9.22
Michigan	Dearborn Heights Retention Basin	2.7	1997	96	5860	\$19,100,000	\$21,200,000	\$23,187,500	\$8.59
Michigan	Puritan-Fenkell Retention Basin	2.8	1999	96	6039	\$17,200,000	\$21,412,419	\$23,419,834	\$8.36
Michigan	Inkster Retention Basin	3.1	1997	96	5860	\$20,400,000	\$26,171,877	\$28,625,491	\$9.23
Michigan	Norfolk CSO Storage/Treatment Tank	4.2	1998	96	5880	\$17,400,000	\$22,247,143	\$24,332,813	\$5.79
Michigan	Acacia Park Retention Basin	4.5	1997	96	5860	\$13,900,000	\$17,832,799	\$19,504,624	\$4.33
Michigan	Bloomfield Village	10.2	1997	96	5860	\$28,900,000	\$37,076,826	\$40,552,778	\$3.98
Michigan	Hubble-Southfield Retention Basin	22.0	1999	96	6039	\$51,900,000	\$64,610,730	\$70,667,986	\$3.21
Michigan	Market Avenue Retention Basin	30.4	1990	96	4732	\$30,000,000	\$47,662,722	\$52,131,102	\$1.71
Michigan	Grand Rapids	30.5	Jun-92	96	4973	\$30,000,000	\$45,352,906	\$49,604,741	\$1.63
San Francisco	Mariposa	0.7	1992	122	4973	\$10,170,000	\$15,374,635	\$13,232,268	\$18.90
San Francisco		6.2	1991	122	4818	\$19,300,000	\$30,115,691	\$25,919,242	\$4.18
		Volume		T	Seattle ENR				Unit Cost
Local Project l	Name	(Mgal)	Year		CCI	Original	Adjusted (2005)		(\$/gal)
Seattle	North Creek Storage	6.0	Dec-99		7137	\$18,700,000	\$21,983,046		\$3.66

<u>Comparision of Current Stroage Formulas with Escalation</u> and the Output of the <u>Escalated Formulas</u>

Current Dewatering Formula (Dec 1999 Dollars)

Standard (\$) = \$750 x (Storage (Mgal))² + \$36,500 x (Storage (Mgal)) + \$340,000 Complex (\$) = $$1,000 x (Storage (Mgal))^2 + $68,500 x (Storage (Mgal)) + $650,000$

Escalated Dewatering Formula (Aug 2005 Dollars)

Standard (\$) = \$880 x (Storage (Mgal))² + \$43,000 x (Storage (Mgal)) + \$400,000 Complex (\$) = $$1,175 \times (Storage (Mgal))^2 + $80,500 \times (Storage (Mgal)) + $765,000$

Standard Dewatering

	Cost w/		Escalated	Cost w/	
Storage	Current	Escalation	Current	Escalated	%
(Mgal)	Formula	Factor	Value	Formula	Difference
1	\$377,250	1.176	\$443,482	\$443,880	0.1%
2	\$416,000	1.176	\$489,035	\$489,520	0.1%
3	\$456,250	1.176	\$536,351	\$536,920	0.1%
4	\$498,000	1.176	\$585,431	\$586,080	0.1%
5	\$541,250	1.176	\$636,274	\$637,000	0.1%
10	\$780,000	1.176	\$916,940	\$918,000	0.1%
15	\$1,056,250	1.176	\$1,241,689	\$1,243,000	0.1%
20	\$1,370,000	1.176	\$1,610,523	\$1,612,000	0.1%
25	\$1,721,250	1.176	\$2,023,439	\$2,025,000	0.1%
30	\$2,110,000	1.176	\$2,480,440	\$2,482,000	0.1%

Complex Dewatering

	Cost w/		Escalated	Cost w/	
Storage	Current	Escalation	Current	Escalated	%
(Mgal)	Formula	Factor	Value	Formula	Difference
1	\$719,500	1.176	\$845,818	\$846,675	0.1%
2	\$791,000	1.176	\$929,871	\$930,700	0.1%
3	\$864,500	1.176	\$1,016,275	\$1,017,075	0.1%
4	\$940,000	1.176	\$1,105,030	\$1,105,800	0.1%
5	\$1,017,500	1.176	\$1,196,136	\$1,196,875	0.1%
10	\$1,435,000	1.176	\$1,686,934	\$1,687,500	0.0%
15	\$1,902,500	1.176	\$2,236,510	\$2,236,875	0.0%
20	\$2,420,000	1.176	\$2,844,865	\$2,845,000	0.0%
25	\$2,987,500	1.176	\$3,511,997	\$3,511,875	0.0%
30	\$3,605,000	1.176	\$4,237,908	\$4,237,500	0.0%

Comparision of Current Stroage Formulas with Escalation and the Output of the Escalated Formulas

Current Odor Control Formula (Dec 1999 Dollars)

Odor Control (\$) = \$126,000 x (Storage (Mgal) +\$10,000

Escalated Odor Control Formula (Aug 2005 Dollars)

Odor Control (\$) = $148,000 \times (Storage (Mgal) + 12,000)$

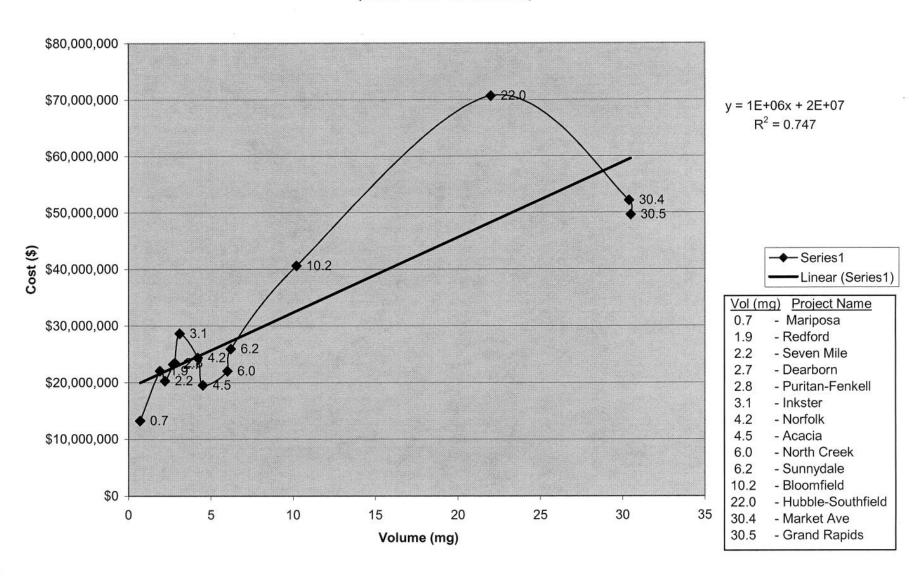
Odor Control

	Cost w/		Escalated	Cost w/	
Storage	Current	Escalation	Current	Escalated	%
(Mgal)	Formula	Factor	Value	Formula	Difference
1	\$136,000	1.176	\$159,877	\$160,000	0.1%
2	\$262,000	1.176	\$307,998	\$308,000	0.0%
3	\$388,000	1.176	\$456,119	\$456,000	0.0%
4	\$514,000	1.176	\$604,240	\$604,000	0.0%
5	\$640,000	1.176	\$752,361	\$752,000	-0.1%
10	\$1,270,000	1.176	\$1,492,966	\$1,492,000	-0.1%
15	\$1,900,000	1.176	\$2,233,572	\$2,232,000	-0.1%
20	\$2,530,000	1.176	\$2,974,177	\$2,972,000	-0.1%
25	\$3,160,000	1.176	\$3,714,782	\$3,712,000	-0.1%
30	\$3,790,000	1.176	\$4,455,387	\$4,452,000	-0.1%

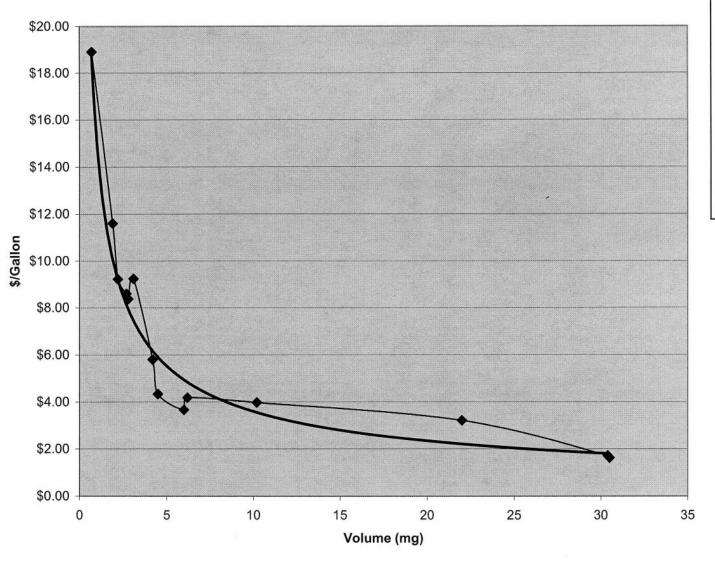
Comparision of Current Stroage Formulas with Escalation and the Output of the Escalated Formulas

Current Effluent Pump Station Formula (Dec 1999 Dollars)

Effluent Pump Station (\$) = $1.15 \times (22,000 \times \text{Capacity (Mgal})^{0.85} + 120,000)$


Escalated Effluent Pump Station Formula (Aug 2005 Dollars)

Effluent Pump Station (\$) = $$1.35 \times (22,000 \times \text{Capacity (Mgal})^{0.85} + 120,000)$


Effluent Pump Station

	Cost w/		Escalated	Cost w/	
Storage	Current	Escalation	Current	Escalated	%
(Mgal)	Formula	Factor	Value	Formula	Difference
1	\$163,300	1.176	\$191,970	\$191,700	-0.2%
2	\$183,603	1.176	\$215,837	\$215,534	-0.2%
3	\$202,369	1.176	\$237,897	\$237,563	-0.2%
4	\$220,200	1.176	\$258,859	\$258,496	-0.2%
5	\$237,368	1.176	\$279,041	\$278,649	-0.2%
10	\$317,110	1.176	\$372,783	\$372,260	-0.2%
15	\$390,812	1.176	\$459,425	\$458,780	-0.2%
20	\$460,846	1.176	\$541,754	\$540,994	-0.2%
25	\$528,274	1.176	\$621,020	\$620,148	-0.2%
30	\$593,694	1.176	\$697,926	\$696,945	-0.2%

Storage Facility (Total Cost vs. Volume)

Storage Facility (\$/Gallon vs. Volume)

Vol (mg) Project Name

0.7 - Mariposa

1.9 - Redford

2.2 - Seven Mile

2.7 - Dearborn

2.8 - Puritan-Fenkell

3.1 - Inkster

4.2 - Norfolk

4.5 - Acacia

6.0 - North Creek

6.2 - Sunnydale

10.2 - Bloomfield

22.0 - Hubble-Southfield

30.4 - Market Ave

30.5 - Grand Rapids

→ Series1
—Power (Series1)

 $y = 15.02x^{-0.6209}$ $R^2 = 0.9311$